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The structure of a strong blast wave under the influence of an expanding inner 
contact surface is studied asymptotically in the Newtonian limit: E _= ( y -  1)/ 
2-y 1, EYE 9 a:. The theory treats the interaction of a shock layer and an inner 
flow region (the entropy wake) and reduces the problem to an ordinary differen- 
tial equation for the shock radius. The pressure-volume relation of Cheng et al. 
(1961) is recovered and extended to a higher order of E .  

It is shown that, depending on the rate of growth of the contact surface, the 
shock layer may ‘reattach’ to the surface at  large time. In  a number of cases, 
the reattachment is approached in an oscillatory manner which leads to a period 
of non-uniformity. The associated problem of multiple time scales (treated in 
sequels to this paper) is identified. 

1. Introduction 
The unsteady gas dynamics equations admit a self-similar solution for an 

intense point explosion in a calorically perfect gas (Taylor 1950; Sedov 1959, 
p. 146-200; Latter 1955; Lin 1954). For the problem considered in this paper, 
the spatial origin of the blast is allowed to expand as an inner contact surface 
after the initial explosion (see figure 1). The problem is equivalent to one of an 
expanding piston, whose motion has been started impulsively, such that the 
initial energy release is non-zero. The flow field in this case cannot preserve the 
self-similar form. 

The analogy between the plane and cylindrical blast waves and the steady 
hypersonic flow over blunt nosed flat plate and cylindrical afterbodies is well 
known (Cheng & Pallone 1956; Lees & Kubota 1957; Chernyi 1959; Hayes & 
Probstein 1966). It is obvious that the unsteady problem under study corres- 
ponds to that of a slightly blunted (planar or axially symmetric) slender body 
of an arbitrary shape in the hypersonic flow theory. One may note in this 
connexion the relevance of the present analysis to problems associated with 
exploding wire experiments and with certain models for sudden expansion of the 
solar corona (Parker 1963, p. 92-112), as well as the use of blast waves for 
energy absorption in gases (Diaber, Hertzberg & Wittliff 1966). 

In  passing, one observes that, with the self-similar solution as an input at 
small time, numerical integration of the unsteady problem is a straightforward 

t Present address : Systems, Science and Software, La Jolla, California. 
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matter, since the system is totally hyperbolic. However, the solution to the 
problem posed has a singularity at  the inner boundary which cannot be recovered 
from standard numerical techniques. The present approach is based on asymp- 
totic solutions for a high shock compression ratio as in the Newtonian flow theory 
(Cole 1957; Freeman 1960). In  the limit of an infinite compression ratio, the 

” 

t 

FIGURE 1. A t, y diagram showing movement of a contact surface which affecta the field 
of a blast wave. In  the sketch t is the time, y is the distance from the spatial origin of the 
blast. 

mass swept by the shock front of the blast, forms an infinitesimally thin ‘shock 
layer’ which travels with the shock, leaving behind it a region of low density 
and high entropy. The inner region may be referred to as the ‘entropy wake’ of 
the blast.? This simplified picture amounts to an application of the Newtonian, 
or the snow-plow, model to the blast wave problem (illustrated in figure 2) .  
The very same idea has underlaid the earlier work of Chernyi (1959) and Cheng 
et al. (1961) on the equivalent problems of hypersonic flows around slender 
afterbodies. $ 

Existing treatments, however, furnish no knowledge of the inner parts of the 
density and temperature fields and become arbitrary beyond the leading approxi- 

t This is consistent with the term ‘entropy wake’ used by Hayes & Probstein (1966) 
for the hypersonic leading-edge problem. 

$ The inner region was referred to previously by Chernyi (1959) and Cheng et ul. (1961) 
as the ‘entropy layer’. 
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mation under e = (y-  1)/2y < 1, where y is the specific heat ratio. The present 
analysis provides solutions to the non-similar field structure in both the low and 
high density regions, and systematically yields solutions to the second order in e. 

The analysis treats, in effect, the interaction of the entropy wake and the shock 
layer in the presence of an inner expanding contact surface. As a result of the 
interaction, the zero pressure point of the standard Newtonian theory (Freeman 
1956; Cole 1957; Hayes & Probstein 1966) does not appear, nor is it possible 
for the shock layer to reattach or reimpinge on the piston, except at a large time. 

FIGURE 2. The snow-plow model of an intense explosion involving a driving contact 
surface (Chernyi 1959; Cheng et aZ. 1961). 

A condition required for the reattachment (through glancing incidence) at large 
time is that the contact surface travels much faster than a pure Taylor-Sedov 
blast wave. Associated with such a reattachment is an oscillatory decay, al- 
though examples of non-oscillatory decays cannot be completely ruled out. 
The oscillation gives rise to a non-uniformity of the present solution at  large 
time and leads to a transition period characterized by multiple time scales. As 
an example, the case of a contact surface which grows linearly with time in one 
spatial dimension is studied in some detail. 

It may be pointed out that the same type of oscillation has been noted earlier 
by Cheng et al. (1961) in their analyses of hypersonic flow over blunted wedges 
and cones. Although corresponding results obtained by Chernyi (1959) did not 
appear to support an oscillatory decay, Schneider (1968) reports recently 
that an oscillatory decay also exists in Chernyi’s solution and can be identified 
both analytically and numerically. 

A part of the study discussed in this paper is based on material from Kirsch 
(1969), where a number of supporting analyses, computational procedures and 
details omitted from this paper are reported. Examples of multiple time scale 
problems are treated in sequels to this paper. 

19-2 
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2. Basic equations 
Consider an intense, point explosion in a uniform calorically perfect gas, which 

is followed by a spatially symmetric movement of an inner contact surface as 
illustration in figure 1. It is stipulated that initially there is a finite amount of 
energy released by the explosion, and that in the short time duration immedi- 
ately after the blast, the field is dominated by the constant energy solution. 
It will be assumed that the fluid motion is particle isentropic and spatially 
symmetric; that the shock remains strong enough, that the shock Mach number 
is taken as being infinite; and that the specific heat ratio is close to unity. The 
shock compression density ratio may therefore be considered as always high like 
( y +  l)/(y- l), or equivalently 8 = ( y -  1)/2y being much smaller than unity. 

Let t denote the time, y the distance from the spatial origin, p the pressure, p 
the density and v the velocity. It is possible to define, through the continuity 
equation under spatial symmetry, a stream function $ (t, y) by 

all. - PYV7 - = -pvy’, 
all. 
aY ax 
_ _ -  

where v = 0, 1 and 2 for cases with plane, cylindrical and spherical symmetry, 
respectively. The partial differential equations governing the problem (with 
the omission of body forces) in terms of the von Mises variables (t ,  $), are 

where y(t ,  9) determines the particle trajectory. The formulation in ( t ,  @) gives 
a Lagrangian description of the field. 

The Rankine-Hugoniot relations provide the outer boundary conditions for 
the dependent variables. For an initially uniform state, and an infinite shock 
Mach number, i.e. pm gt/ypm -+ co, these boundary conditions become 

where ys(t) is the distance between the shock and the spatial origin. The dot in 
(2.3) stands for the time derivative and the subscript 00 refers to the undisturbed 
condition at  infinity. Note that the Rankine-Hugoniot value for v is automatic- 
ally satisfied. The impermeability condition of the contact surface provides the 
inner boundary condition 

where y,,(t) is the distance from the contact surface to the partial origin and is 
assumed to be differentiable. This is equivalent to the boundary condition 
y = y,(t) at $ = 0. 

The stipulated dominance of the constant energy solution at  the early time 
requires 

v = yc at $ = 0, (2.4) 

ys N At2/(3+v), as t - t  0,  (2.5) 



Gus dynamics of an intense explosion 293 

where A is a constant related to the initial blast strength as well as y, This, 
together with the initial energy released E,, is all one needs for the initial input 
in the subsequent solution. As may become evident from the results obtained, 
the requirement (2.5) on the initial shock behaviour imposes a restriction on the 
contact surface yc, namely, 

yc/t2!(3+4 -+ 0, as t -+ 0. ( 2 . 5 ~ )  

That is, initially the contact surface shall move more slowly than a pure blast 
wave front. Equation (2.5) ensures that the total energy in the fluid is bounded; 
the equivalence of (2.5) and the boundedness requirement on the total energy 
may be inferred from the earlier works on power law shocks (Lees & Kubota 
1957; Chernyi 1959; Mirels 1962). To expedite the subsequent error estimates, 
it will be stipulated that the approach to the asymptotic limit (2.5) is algebraic: 

ys - AtZ/@+v) BtZ/@+v)+al as t -f 0, (2 .5b)  

where a, > 0. This implies that yc/t2’(3+v) in ( 2 . 5 ~ )  is algebraic in t .  

3. The region near the shock (shock layer) 
3.1. Proper scales and reduced equations 

For convenience, the stream function $ will be replaced by yi+v = $/pm( 1 + v). 
The independent variable, y*, gives the position on the shock at which the particle 
path associated with 1c. leaves the shock, as shown in figure 3. Thus, on the inner 

1 

FIGURE 3. Co-ordinate system and definitions of y,(t) and y*. 

contact surface, one has y* = 0, and a t  a position right behind the shock, one 

Let 7 and b be the time and length scales, respectively, whose magnitudes will 
be subsequently chosen. As in classical shock layer theory the characteristic 

has Y* = Y s W  
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scales in the region near the shock may be inferred from the shock relations, 
(2.3). Accordingly, one introduces the new dimensionless variables 

(3.1) I t’ = t/r, Y = y,/b,  Y ,  = y*/b ,  $ 3 ( y - y , ) / s b ,  

8 = (v - 2i,)r/sb, p̂  = pelp,, 
These variables are assumed to be of unit order in the outer region. The prime 
will be dropped on the t’ as a matter of convenience. It is also assumed that the 
dependent variables have asymptotic expansions in ascending powers of E ,  

9 = pr2/p,bk. 

(3.21 I Y(t)  = &(t)  + a&) + 0 ( € 2 ) ,  

jw, Y*) = i3,(t, Y*) + E 9 l ( t ,  Y*) + O(C2), etc. 
The analysis in this outer region is straightforward, and is equivalent to that o 
Cole (1957), also identifiable with those of Freeman (1956) and Chernyi (1959), 
specialized to slender bodies. 

In terms of the new variables and their expansions, the partial differential 
equations (2.2) and the shock conditions (2.3) yield, for the leading approximation, 

( 3 . 3 4  

For the next approximation 

(3.4a) 

fil = 2F0Y1- PX+Y,Y~, p1 = - 1 + 3y1Yo/Y,2, g1 = - 1 at Y* = ~ , ( t ) .  
(3.4b) 

The last terms in each equation of (3.4b) arise from transferring the outer bound- 
ary condition at Y* = Y(t )  to Y* = Yo(t). 

The initial blast requirement (2.5) may be written in terms of the adopted 
variables as 

with a > 0. Only through (T in the above, does the initial energy release enter 
into the present formulation. For the subsequent analysis, this parameter may 

be expanded as (T = V0++“‘Tl+ ..., (3.5a) 

where the coefficients cro and ( T ~  will be determined later. One observes from (3.5) 
for subsequent application that, since ys  N At2I3+” and (T cc A3+v, as t + 0, 

(3.5b) 
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Q = $$ - 21n f i0  + 41nY0* - 2(P0F1 - YIYo),. PE,, 
Po Po 

3.2. The zeroth- and theJirst-order outer solutions 
In  terms of the zeroth-order shock co-ordinates Y,(t), ( 3 . 3 ~ )  and (3.3b) furnish 
the leading approximation familiar in Cole’s (1957) work 

> (3.7) 

I 

I 
where yo, is a function of Y, and strictly stands for the value ofPo(t) when Yo(t) = 

Y,, i.e. when t = to(Y,) from the inverse of Y* = Y,(t) .  The symbol stands for 

an integral in Y, with the lower limit a t  Y* = Y,. It results from an inverse 
transformation of the von Mises variables, and gives the history of the particle 
associated with each Y,. 

In  a similar manner, one obtains from ( 3 . 4 ~ )  and (3 .4b)  more lengthy results 
for the next order, which involves Yo(t) and Yl(t), 

/Yo 

(9”’l 1 
@1 = 2F0F1 - + FoY1 + Kv (%Y1 - YYOY1) 1 - - 

where the subscript *refers to the value at  t when Y,(t)  = Y*. Note that the second 
of (3.6) and (3.7) may be derived from the exact particle isentropy condition. 

If the shock layer were adjacent to the contact surface as in Cole’s (1957) 
theory, the impermeable condition there would require Y(t)  + ey(t, 0 )  = Y,(t) ,  
giving &(t) = YJt )  and q ( t )  = - yo(t, 0 ) ,  Yz(t) = - yl(t ,  0) ,  etc. Equations (3.6) 
and (3.7) then determine the shock layer structure explicitly in terms of y,(t), 
to the order E .  However, in the present problem there is a specified singularity, 
(2.5) or (3.5). Hence, this procedure breaks down because the solution ceases to 
be valid before the contact surface can be reached, i.e. it becomes invalid as 

Y*+O* 
To see the breakdown and the need for introducing a distinctly different inner 

flow region, one may examine the behaviour of the Qo(t,y*) according to  (3.6) 
and (3.7). With p& N V ~ Y ; ( ~ + ~ )  from ( 3 4 ,  equations (3.6) and (3.7) give, as 
Y*+O 

indicating clearly that the expansions of (3.2) cannot be uniformly valid in the 
range of Y, where E In Y* is of order unity, i.e. where Y, is exponentially small in E .  
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4, The inner region (entropy wake) 
4.1. Proper scales and variables 

In seeking a new form of solutions for the inner region where eln Y* = O( l ) ,  one 
observes that a resealing of Y, as Y,/S, where 6 is a function of E ,  would not help 
to resolve the problem of non-uniformity, because the logarithmic singularity 
remains with the solution in the rescaled variables. It is more expedient to 
look for a change in the independent variable less restrictive than the affine 
transform Y, -+ Y*/S. There are as many admissible transformations as there are 
ways to write eln Y,. For example, (elnY,) = In (Y;) = (lln) In ( YnE), with 
n + 0,m. The inner variable adopted in the present analysis is 

Y$(l+V)E 
[=----- g2€ ’ (4.1) 

which gives solutions in their simplest form. Its choice would have been suggested 
from studying Sedov’s (1959) analytic solution (also see Freeman 1960). The 
variable is also similar to that employed by Chapkis’ (1965) study of power law 
shocks in the Newtonian limit. 

From the definition, it is evident that the zeros of Y* and 5 coincide and that 
as soon as the order of Y* becomes lower than an exponentially small order 
(in e), 5 is near one. Suffice it to say that Y* is exponentially small for the inner 
region. Its absolute scale will not be necessary for the analysis. One may assume 
that the particle co-ordinates, the gas velocity, and the pressure in this region 
remain at the same order as in the outer region. The particle isentropy condition 
(3.8) indicates that the density belongs to the same order as pg2 i.e. Y$+’, and 
is therefore exponentially small in E .  To accomplish an asymptotic analysis in 
the inner region, it is expedient to eliminate Y;+’ through a transformation of 
the density. 

The set of new variables fulfilling these requirements is 
t’ ti7, 6 Y2(1+Y)€ r 2 C  * I f Y = Y / h  

As before, the prime in t‘ will be dropped. 

4.2. The inner solutions 

In  the new variables of (4.2), which all will be taken to be of unit order, the first 

(4.3) 

throughout most of the region 0 < &‘ c 1. The right-hand side of (4.3) is smaller 
than any power of e. The pressure variation across the region is therefore ex- 
ponentially small, like 5112e or Y$+”. 

Next, through the definition of p ,  the particle isentropy condition, the initia 
behaviour of the shock, and the fact that the pressure remains uniform, one has 

of (2.2) becomes fl ajj p 2 E )  - 1 3 - 
a{ - y”” at 2(1+ U ) E ’  
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where jj is independent of < and the relative error is exponentially small, like 
( < ) a / z e .  Finally, from the inverse of the von Mises transformation and the inner 
boundary condition, i.e. y”(t, 0) = gC = y,/b, 

The remainder in (4.5) is exponentially small, belonging to orders c1/2a and 
<+:+l+a/2E. Note that v” = @/at  follows from (4.5). 

Since the relative errors in (4.4) and (4.5) are smaller than any positive in- 
tegral power of E ,  the unexpanded form of y, u, andplh are retained above. These 
equations can, of course, be rewritten in the regular expansion form by expanding 
(y+ 1) [ (y+  1)/2I1/Y/2y, v, andjjl’y with respect to E .  

Matching the inner region solution to that of the shock layer will provide 
enough information for the final determination of the shock shape and pressure 
to O(e2) .  It is essential, however, to verify that a common range of validity for 
the two asymptotic solutions exist. 

5. Reduction to ordinary Werential equations-matching of the two 
solutions 

5.1. The common domain of validity 

Based on equations (4.3)-(4.6), the inner expansion for the particle path, y”(Y*, t ) ,  
is valid so long as ( l / ~ ) < l / ~ ~  < 1, i.e. Yi++Y < 1. According to (3.8), the expansion 
for the shock layer remains valid for sllnY,I < 1, or equivalently, so long as Y* 
is not as small as an exponential order. A common domain of validity for the 
two expansions may therefore be found in 

Ielnsl < ellnY,I < 1 

or, in terms of the inner variable, Elln € 1  < 11 - 61 < 1. 

may be written as 
In  this range of overlap, one observes that the inner independent 

(5.1) 

variable 

y p + Y ) E  

;=-- - - 1 + [2 ( 1 + v) In Y, - 2 In go] E + O( e2 ln2 Y* ) . 
v 2 c  

Consequently, the entropy wake solutions for y from (44, in terms of E and Y*, is 

(5 -2 )  

where Y:, with K > 0, represents the remainders contributed by terms of the 
type 51/2~, e/2€, i.e. Y;+. and Y$l+v), noted in $4. The corresponding expressions 
for the outer variables have been omitted t o  conserve space. Equation (5.2) 
and the unwritten results for 27 and p”, corresponds to the ‘outer limit of the inner 
expansion’. 
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The shock layer expansion for y, from (3.6) and (3.7) may be written for the 
overlapping region as 

+ @ + v )  Yt;(t). [Y,+F.P.~o(t ,0)]+O(s2,  EYK*), (5.3) 

where - ( 5 . 3 4  

is the finite part of the shock layer thickness. Among terms in the remainder of 
(5.3) are those resulting from &which are not needed for the level of matching 
considered in the subsequent section. Equation (5.3) constitutes the ‘inner limit 
of the outer expansion’ for the particle path. The corresponding expressions for 
$ and p^ are omitted for brevity. 

5.2. Hatching of the two solutions 

P O ( t )  = %(t, 01, @l(t) = Bdt, 0 ) s  *. - 9  

It is readily apparent from (4.3) that matching in pressure dictates that 

and that matching of the two limiting forms of the density also follows. The 
overlap expansions for the particle trajectories, i.e. equations (5.2) and (5.3), 
may also be matched (which also ensures matching in the velocity) t o  the fist 
order. This yields the two equations 

I F0( t )  [ Yi+”(t) - Ycl+”(t)] = &To, 

The first of (5.4) is recognized as the pressure-volume relation obtained by 
Cheng et al. (1961). In  the second equation, it is seen that there is a linear 
relationship between the surface pressure correction, @,(t), the shock displace- 
ment, q ( t ) ,  and an effective shock layer thickness, $’. P . Q0(t, 0) .  With 
given by the Busemann (1933, pp. 244-279) pressure formula and @,(t), through 
(3.7) and (3.7a), by 

(5-5) 

Equation (5.4) yields a non-linear second-order ordinary differential equation 
for Yo and a linear second-order equation for Y, 

where W(t) ,  omitted to conserve space, is determined explicitly by Y,(t), go 

and al. 
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The constants u, hence uo and u,, may be related to the initial blast strength 

(5.7) 
2(y2-1) EoT2 

and y through. 
g=-- 

k,Ib pmb3+*’ 

where k, = 1, 27r and 47r for v = 0, 1, and 2, respectively, and 

1 
(P+WF-”)y”dy = ~ [1+ e( 3 - 2 In 2) + O( e2) ] ,  (5.7 a )  

2 ( l + v )  
- -  

with P ,  R, V and T,I being the ratios of the pressure, density, velocity, and y 
to their shock values in the case of a pure blast wave. One may now choose the 
reference scales T and b so that &ro is unity.? With this choice, (5.7) and (5.7a) 

= 2, u, = 41n2. (5 .7b)  give 

The fact that uo and u1 in (5.4) and (5.6) are of unit order insures that the effect 
of the initial blast does not appear to be small when t = O(1). 

It should be noted that the equations in (5.4) may be combined to yield 

I B(t ,  O )  l’y[ Y;+”(t) - Y’c+”(t)] = 1 + 0 ( € 2 ) ,  [TI 
Ye = Y(t) + EF . P . go(t, 0). J 

This is similar to the pressure-volume relations stipulated in earlier studies of 
Guiraud (1965), Cheng et al. (1961) and Mirels (1962). However, the constant 
on the right-hand side of the present relation is completely determined to 
the order E .  Moreover, with the appearance of the h i t e  part of the shock layer 
integral, the base of the shock layer is now unambiguously identified with the 
function Y,(t). 

5.3. The solutions at small and large lime 

Under condition (2.5a), the small time limit of (5.6) becomes 

Yod2Y2,+”/dt2= ( l+Y)(2+V),  (5-9) 

which is reducible to a first-order differential equation for Yo. There is a single 
integral curve among the one-parameter family, which gives the pure blast- 
wave solution Yo oc t21C3+”). A particular integral to the second of (5.6) for Yl 
in the limit t -+ 0 is Y, N a,Y0/2(3 + Y), which is the only integral curve that ful- 
fills the required pure blast behaviour (3.5b). The integral curves at large Yo 
and Yl all tend to the blast wave solution as t - t  0. Hence, the pure blast solution 
is stable for an increasing t. Thus, with the help of a series solution for small time, 
numerical solutions to (5.6) can be carried forward in t. The singular solutions 
for Yo and Yl at small t yield 

t The required condition is bSfv /+  = 2(1+ v)eEo/kvpm. 
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For y = z ,  the difference between the exact similar solutions and the corres- 
ponding expressions in (5.10) is found to be 2-4 yo in shock shape, and 3-5 % 
in pressure. The improvements accrued by including the first-order correction 
will be further demonstrated in a subsequent section. 

Consider now the behaviour at  long time under the assumption that 

Y , N t u ,  as t-too, (5.11) 

where w is a constant exponent. The first of (5.6) admits a power law solution for 
t -+ CQ, depending on w ,  

2 2 
Yo - t2/(3+v),  if w < -- Yo - tu, if w > - (5.12) 

3 +  u' 3 +  u' 

In  the case of o < 2/(3 + v), the differential equations governing Yo and Yl can 
be reduced for large t to the same form as for small t, and the solution represented 
by the first of (5.12) is readily seen to be a stable one, inasmuch as t"/ Y +- 0. 
In  the case o > 2/(3+ u), the solution indicated by the second of (5.12) is also 
stable, since subsequent study in $6  will reveal that the solution indicated is 
the asymptotic limit for a two-parameter family of integral curves. 

The change of behaviour at  w = 2/( 3 + u )  signifies that, a t  large t ,  reattachment 
of the shock layer to the contact surface will occur for w > 2 / ( 3  + v). Equation 
(5.12) in fact bears out the form of asymptotic solution proposed by Freeman 
et al. (1964) for a power law afterbody. The second of (5.6), or (5.4), for w > 21 
(3+ v) leads to the large-time behaviour for the next approximation of Y ,  

Yl - F . P . &)(t, 0) oc tu. (5.13) 

This result is readily arrived a t  by considering the composite form (5.8), which 
under Y$2/(3+v)+ 00, yields [ Y( t )  - &(t) ] - EF . P . g,(t, 0). It agrees with the 
Newtonian results (Cole 1957) in the absence of an initial blast. 

6. Oscillatory approach to the reattachment at large t 
The equation (5.6) admits solutions for the shock shape which exhibit an 

oscillatory decay with a distinct frequency and damping rate. The following 
discuss the periods of non-uniformity of the expansions associated with the 
oscillation and will note the character of multiple time scales for the proper 
description of these periods. 

Consider the case which is equivalent to a blunted wedge in hypersonic flow, 
i.e. Y, = t ,  u = 0. The differential equations (5.6) and corresponding equations in 
the next order admit solutions for large t ,  giving 

[ 
A 
tP 

@(t)  N 1 - 2 cos { 2 4 ( t )  + $,} + . . . - E (B,tQ+B,t%) cos(24(t)  + $,I + 1 + . . . 

A 
t9 

+ A cos {24(t) + q$} + .. .] - E~[C,~Z cos {24(t) + $,} + . . .] + . . ., (6.1) 

where A,, q5,, A ,  and $, are constants of integration and the constants B,, B, 
and C,  are determined by A,. The form of (6.1) has been confirmed by numerical 
integration of (5.6) with A,  N 0.71, g5, 2: 79" (see discussion in 3 7). 
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Obviously, the solution fails at  large t .  Two periods of non-uniformity may be 
identified 

I t = O ( d ) ;  I1 t = O(s-1). (6.2) 

The first range of (6.2) follows directly from (6.1); it is not difficult to show that 
this is the period of non-uniformity for the m term expansion (m 2 2) of 9 and j3 
in the case Y, = t ,  u = 0. The second range of (6.2) could have been arrived a t  
through equating the thicknesses of the entropy-wake and the shock layer, since 
implicit in the foregoing analysis is the assumption that the former is much 
thicker than the latter. The need for the second range, 11, is verified by an 
analysis of range I (to be delineated in sequels to this paper). The same analysis 
also shows that range I is less important, since it does not contribute to  the 
leading order of - 1. It should be apparent, in the meantime, that the oscillation 
revealed in (6.1) imposes a time scale which is much smaller than either of the two 
in (6.2). Thus, the problem in either period is described by two characteristic 
times as in the multiple time scale method (see Cole 1968; Van Dyke 1964). 

For a more general contact surface, for which Y, N to with a remainder being 
algebraic in t ,  the equation for Y,(t), (5.6), admits an oscillatory approach for 
2/(3 + Y )  < w < 4 (Kirsch 1969) 

7 + 5 v  
4 

2w[ (2 + v ) w -  11 
(6.3) 

3 + u  
1, f(w, v )  = ( 3 + ~ ) ~ - 2  ’ 

A, G 1, A, E __- 

where g is an algebraic function oft, w and v ;  A ,  and q5, are constants of inte- 
gration. However, examples with a non-oscillatory approach (implying A ,  = 0) 
may still be constructed from solutions to the inverse problem. For example, the 
contact surface supporting a non-oscillatory shock, Y,  = [(3 + v )  t/2I2/@+v)+ tu can 
be computed from the first of (5.6) and is non-oscillatory. For A,  + 0, the periods 
of non-uniformity corresponding to ranges I and I1 of (6.2) are respectively, 

I t = O ( € - q ;  I1 t = O(€+l). 

The time scale characterizing the oscillation in (6.3) then appear to belong to an 
order E* higher than range I, and e* higher than range 11. It should be noted that 
the anomaly of the theory presented in Q 5 appears mainly in the higher approxi- 
mations. In  the case of Y, = t ,  the pressure corrections in the important range I1 
are of the order e% for u = 0, and of €4 for v = 1. 

7. A numerical example: Y, = t ,  Y = 0 

As an example, solutions to (5.6) will be studied for the case Y, = t and u = 0, 
corresponding to a slightly blunted thin wedge in a hypersonic flow. Comparison 
with existing numerical characteristic solutions for the blunted wedge problem 
may indicate the degree of improvement over the earlier work that can be attained 
through the present analysis. 
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With the help of series solution for small time, solutions to (5.6) are obtained 
through forward integration in t. The integration (executed on a Honeywell 
800) employs a Runge-Kutta procedure over five decades of the reduced time, t. 

1 
t = 2a'x/~kd 

FIGURE 4. Comparison of the pressure on the contact surface yc = t based on the present 
analysis with pressure on blunted wedges in hypersonic flows. Solution by characteristics 
method. Half wedge angle a when M ,  = lo4, y = 1.40, x/d > 2 (Cleary & Axelson 1964): 
A ,  5";  @, 10"; 0, 15"; 0, 20"; v, 26". ---, zeroth-ordersolution, Po; - , present 
solution, go + ~ $ 7 ~ .  

A uniform time step, At, is chosen for each decade, with 100 points per decade. 
Some care is required in evaluating the finite-part and other integrals in the 
function W(t)  of (5.6). The solutions for Yo and 9, are indistinguishable from 
the earlier results of Cheng et al. (1961) which was computed with a different 
procedure (and step sizes). Over the range of t = 10 to t = 100, the large time 
solutions for 13, and Yo with A, N 0.71 and $o N 79" are confirmed t o  within 2 yo. 

For a meaningful comparison with the hypersonic wedge flow, the scales r 
and b are related in accordance with the equivalence principle to the flow speed 
urn, the nose diameter d, nose drag coefficient k, and the half wedge angle 01 as: 
r = ekd/2a3urn and b = ekd/2a2. Thus, 

where x is the distance from the nose. In  figure 4, the surface pressure on blunted 
wedges obtained by Cleary & Axelson (1964) from the characteristics method for 
y = (e = 3) and an infinite Mach number are correlated through (7.1) as fl 
versus t (open dots). To satisfy the small disturbance assumption required by 
the equivalence principle, data for a > 20" and xld < 2 are excluded. The result 
go+ eijl based on the present work is plotted as a full line. According to $5,  
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the transition period where the first-order corrections become invalid, occurs at t 
of the order l / e  (which is 7 for y = 3) .  The curve is therefore not reproduced 
beyond t = 10. For comparison, the ‘zeroth-order approximation’, p,,, originally 
given by Cheng et al. (1961), is also included (dash curve). 

The improvement of the present work over the zeroth-order solution in the 
range of t shown is obvious; reasonably good agreement of the present result 
with the correlated characteristic solution is also apparent. The small difference 
from the characteristic solution, even at  t = 10, is not unexpected, since the 
relative error in the pressure is at  most O(e*) at  t = 0 ( 1 / ~ )  as noted earlier. One 
may also note that $he large pressure undershoot found in the zeroth-order 
solution almost disappears in the present result and that the limit corresponding 
to a sharp wedge has been quite closely approached even before the transition 
period. There is also reasonable agreement between Cleary’s (1965) numerical 
solution and the present analysis in the shock shape (see Kirsch 1969). 

While the precise error of the blast-wave analogy (Lees & Kubota 1957; Cheng 
& Pallone 1956) remains unsettled (see Hayes & Probstein 1966), it must be 
pointed out that the correlated data from characteristics solutions in figure 6 
of that paper are themselves a measure of the degree of validity of the equivalence 
principle, as much as the pressure is concerned. 

8. Concluding remarks 
A gas dynamics theory has been presented for an intense explosion which 

involves an expanding inner contact surface under the conditions: eg; 9 a:, 
E < 1. The interaction between the entropy wake of the initial blast and the shock 
layer is analyzed and the structure of the two flow regions is determined. In  the 
process, the pressure-volume relation obtained from an earlier model (Cheng 
et at. 1961) is recovered and is extended to a higher order in E. 

The reduced differential equations admit a reattachment solution accompanied 
by an oscillatory decay for a class of contact surface motion. This oscillation, 
as confirmed in the numerical examples discussed in the text, leads to non- 
uniformity at  large t .  Two transition periods are identified, each is described by 
two local time scales. Solution of this ‘two-time problem ’ may furnish a theoretical 
basis for modelling the reattachment process in the shock layer approximation. 

Comparison of the present results for the case Y, = t, Y = 0 with the numerical 
characteristics solution of the equivalent problem of hypersonic wedge flow 
has been made. Substantial improvement over the ‘zeroth-order approxi- 
mation’ (Cheng et al. 1961) in the range of the scaled time 0 < t < O ( ~ / E )  is 
demonstrated. 

Finally, a comment should be made on the model of a blast wave involving an 
asymmetrical movement of the inner contact surface. The highly stratified 
density field described by (4.4) and (4.5) suggests that flow symmetry will be 
confined principally to a restricted, inner region of the entropy wake. This inner 
wake region is bounded by the smallest constant Y* surface generated from the 
symmetric solutions which encloses the asymmetric contact surface. Such a 
model corresDonds to the ‘hypersonic area rule’ proposed by Ladyzheniski 
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(1961) in the eqivalent blunt-nosed slender body problem, but represents a form 
stronger than the latter. 
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